Bienvenidos. Este blog está dedicado a la Microbiología pero en general cualquier tema científico de interés tambien puede aparecer. El contenido de este blog es estrictamente científico y docente, por lo que no es un consultorio de salud. No estoy ni capacitado ni autorizado para responder a consultas de carácter médico-sanitario que expongan casos personales. Las imágenes que aparecen están sacadas de sitios públicos de la web y se indica su origen o basta cliquear sobre ellas para saberlo, pero si hay algún problema de copyright, por favor indicarlo en comentarios y se retirarán.

Para ir al blog de
PROBLEMAS DE MICROBIOLOGIA o al PODCAST DEL MICROBIO , pincha sobre el nombre.

miércoles, 30 de julio de 2008

Colisiones y Cambio Climático

Ilustración de Nature sobre el fraccionamiento del supercontinente Pangea hace 200 millones de años

El mayor cambio climático que ha sufrido este planeta sucedió hace unos 2.500 millones de años, milloncejo arriba, millloncejo abajo, y fue debido a la acumulación de un producto de desecho por parte de unos microorganismos que ahora conocemos por cianobacterias. Dicho cambio climático permitió la posterior aparición de los organismos pluricelulares cuya evolución dio lugar a las plantas y animales actuales, entre los cuales nos encontramos.
Las cianobacterias surgieron hace unos 2.700 millones de años. Estos microorganismos presentaban una capacidad fotosinténtica nueva. Eran capaces de aprovechar la energía solar hasta tal punto que podían romper la molécula de agua. Mediante la fotolisis del agua (H2O), los dos hidrógenos de dicha molécula podían ser utilizados para el metabolismo de dichos seres vivos. El oxígeno (O2) quedaba como un residuo y al ser un gas era fácilmente expulsado por las células.
Anabaena, una cianobacteria
El oxígeno es un gas muy reactivo y durante 200 millones de años este gas fue combinándose y por lo tanto oxidando, todo aquello con lo que tropezaba, sobre todo el hierro. Pero después de 200 millones de años todo lo que podía ser oxidado en la litosfera ya lo había sido y el oxígeno gaseosos comenzó a acumularse en la atmósfera. Se acumuló tanto que provocó que la atmósfera primitiva pasará de ser anaerobia a ser totalmente aeróbica. Actualmente los niveles de oxígeno en la atmósfera son de un 21%, aunque ha habido épocas en que dicha concentración fue mayor.

Anaerobios endosporulados mostrando su preocupación ante la aparición de la fotosíntesis oxigénica

Pero una cosa es saber lo que ha pasado y otra explicar el por qué pasó. Una de los muchos aspectos oscuros de la historia contada arriba es porque tras 200 millones de años la litosfera se saturó de oxígeno. Dicha saturación fue lo que permitió la acumulación del gas en la atmósfera, pero nadie entiende por qué no se saturó antes, ni por qué no fue después.
Charlotte Allen e Ian Campbell, científicos de la Australian National University, creen haber encontrado la respuesta. Según aparece en la web de Nature, la colisión de los continentes pudo ser la responsable. Por la colisión de las placas tectónicas se forman montañas y cristales de zirconita. Cuando las montañas se erosionan llevan nutrientes al mar. Estos nutrientes permiten el crecimiento masivo de las cianobacterias. Se produce así una gran emisión de oxígeno, al mismo tiempo que el carbono queda fijado en los microorganismos como carbono orgánico, por lo que no se combina con el oxígeno producido y se deposita en el fondo de los mares. Los científicos desarrollaron dicha hipótesis cuando notaron que los eventos de creación de cristales de zirconita coincidían con los eventos de incremento de oxígeno en la atmósfera.
Evidentemente, la hipótesis ha sido criticada por otros científicos. Muchos como James Kasting, geoquímico de la Pennsylvania State University, considera que la hipótesis no cuadra con lo que conocemos del ciclo del carbono y que la premisa de que el depósito de carbono orgánico se incrementa en el tiempo es falsa. Pero lo cierto es que la correlación existe, así que probablemente ambos fenómenos si tengan alguna relación, pero todavía no sabemos cuál.

Audio en "el podcast del microbio"

.

lunes, 28 de julio de 2008

La unión hace la fuerza, y las armas.




Ya hemos comentado en el blog que un biofilm es una comunidad microbiana de células adheridas a una superficie. Una de las ventajas que proporciona es la protección frente a la depredación por protozoos. Hasta ahora se pensaba que esa defensa era estática. Las bacterias que forman el biofilm al estar pegadas las unas a las otras serían como los ladrillos de un muro. Y todo el mundo sabe que es más difícil romper un ladrillo suelto que un ladrillo dentro de un muro.

Pues el grupo liderado por el Dr. Carsten Matz del Centro Helmholtz para la Investigación de las Infecciones ha encontrado algo bastante llamativo en los biofilms marinos. Al parecer estos biofilms son capaces de anular los ataques depredadores de las amebas utilizando "armas químicas". Las amebas son unos protozoos que están especializados en fagocitar a las bacterias que les sirven como alimento. Los investigadores notaron que los biofilms formados por determinadas bacterias no solo eran inmunes a los ataques de las amebas, sino que además estas últimas quedaban paralizadas e incluso morían. En palabras del Dr. Matz, las bacterias no solo habían construido una fortaleza, sino que también eran capaces de contraatacar.







Ameba alimentandose





Para identificar el compuesto responsable de dicho efecto, se analizó más detalladamente los biofilms formados por la γ-proteobacteria, Pseudoalteromonas tunicata una de las especies con mayor actividad antiprotozooaria. Determinaron así que en dichos biofilms se produce la síntesis de un pigmento llamado violaceina que resulta letal para el protozoo. Una prueba más del papel de la violaceina vino dada por experimentos en los cuales se utilizaban biofilms de un mutante de P. tunicata que no sintetizaba violaceina. En esos casos, el biofilm era completamente consumido por los protozoos.



Estructura de la violaceina

Cultivo de Pseudoalteromonas



Otra cosa que han observado es que la producción de violaceína por las bacterias se ve incrementada cuando éstas forman un biofilm en comparación a aquellas que se encuentran nadando en el plancton. El incremento es el triple como mínimo, pero en algunas especies del género Microbulbifer encontraron incrementos de hasta 60 veces mayores.

Quizás lo más llamativo es el mecanismo por el cual la violaceína acaba con el protozoo. Al parecer lo hace desencadenando una respuesta de muerte celular muy parecida a la apoptosis de las células eucariotas de los organismos pluricelulares. En protozoos incubados con violaceína, se observa fragmentación del DNA nuclear e incremento de la actividad caspasa 3. De hecho, la violaceína activa la apoptosis en células de mamífero.

Desde el punto de vista aplicado esto puede tener implicaciones de dos tipos. Por un lado puede explicar el porqué son tan resistentes al ataque de los macrófagos algunos biofilms formados por microorganismos infecciosos. Por otro, los biofilms podrían ser una nueva fuente de producción de nuevos compuestos bioactivos contra distintos patógenos.




Audio en "El podcast del microbio"

martes, 15 de julio de 2008

Úlceras precolombinas

Momias precolombinas (fuente: El Mundo)


Cuando uno lee algún texto sobre la colonización de las Américas por los europeos enseguida se topa con algún párrafo dedicado a las enfermedades transmitidas desde el viejo continente al nuevo, destacando sobre todas ellas a la viruela. Sin embargo desde hace tiempo se sospecha que más de una enfermedad ya estaba allí y que incluso realizó el camino inverso. Parece que ahora le ha llegado el turno a las úlceras de estómago.

En el año 1983 los microbiólogos Robin Warren y Barry Marshal postularon que la bacteria Helicobacter pylori era la principal causa de las úlceras gástricas. La comunidad médica no les creyó, así que llevaron a cabo una serie de experimentos para demostrar que H. pylori cumplía los famosos postulados de Koch. Para demostrar el tercer postulado, Barry Marshal se bebió un cultivo de H. pylori y a los diez días había desarrollado una úlcera. En el año 2005 Robin Warren y Barry Marshal recibieron el premio Nobel de Medicina.


Helicobacter pylori


El caso es que desde que se demostró que H. pylori era un patógeno más, aparecieron algunos artículos indicando que dicha bacteria había sido llevada al Nuevo Mundo por los conquistadores. H. pylori es un parásito y por lo tanto tiene una estrecha relación con su hospedador, tanta que ha co-evolucionado con el. Si uno analiza los genes responsables de la patogenicidad de dicha bacteria encontrará que hay cinco tipos distintos. Lo que se encontró es que el llamado Tipo 1 era muy frecuente en España y en Latinoamérica, pero también en los Estados Unidos. El tipo II era el más frecuente en China y Japón. El estudio utilizaba 43 cepas europeas: 33 españolas, 7 suecas y 3 lituanas, lo que me hace preguntarme el papel de los franceses, ingleses, irlandeses, portugueses, italianos y alemanes en la colonización de América. Posteriormente aparecieron otros estudios genéticos que indicaban que H. pylori estaba presente en las poblaciones americanas antes de la llegada de Colón.


Ahora un grupo de la Universidad Autónoma Nacional de México parece que ha aclarado algo más las cosas. Han cogido muestras de tejido de unas momias precolombinas de 700 años de antigüedad. Los tejidos muestreados fueron el estómago, el paladar y el cerebro. Estos dos últimos eran controles negativos, porque H. pylori nunca se encuentra en ellos. Mediante PCR han encontrado DNA de H. pylori solamente en las muestras gástricas.


Supongo que el estudio se repetirá con otras momias y si se confirma, entonces se podrá afirmar que H. pylori ya había llegado a las Américas antes de Colón.


.

viernes, 11 de julio de 2008

El Test de Fluctuación. Un experimento simple, sencillo y elegante

.
El siguiente comentario no es mío. Pertenece al estupendo blog "The evilutionary biologist" escrito por John Dennehy, pero me ha parecido tan interesante que lo he traducido. Tiene mucho que ver con una entrada reciente, la dedicada a los experimentos sobre la evolución de Richard Lenski.


La cita clásica de la semana. El Test de Fluctuación.




Max Delbruck, Salvador Luria, and Frank Exner en el Cold Spring Harbor Laboratory.

Artículo Original:

Luria S. and Delbruck M. 1943. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 8: 491.

La cita clásica de la semana está dedicada a los premios Nóbel Salvador Luria y Max Delbruck y es uno de los más famosos experimentos de la Biología. Luria y Delbruck se preguntaban sobre la naturaleza de las mutaciones. ¿Eran espontáneas? O por el contrario ¿ocurrían en respuesta a las condiciones ambientales? Este último punto de vista, común en algunos científicos actuales (p. ej. Cyril Hinshelwood), fue uno de los últimos vestigios del Lamarckismo en la biología evolutiva.


Desde la época de
d'Herelle, se sabe que un cultivo de bacterias expuestas a la acción de un virus bacteriófago va perdidendo turbidez y clarificándose, como si todas las bacterias en dicho cultivo estuvieran muriendo (de hecho eso es lo que pasa). Sin embargo, algunas veces el cultivo vuelve a crecer y la turbidez reaparece. Se asumió que la bacteria adquiría una resistencia a la acción del fago y que era capaz de repoblar el cultivo. La pregunta era ¿cómo podía utilizarse dicho sistema para demostrar el papel del azar en las mutaciones?


Luria estuvo cavilando sobre el problema durante varios meses, intentando diseñar un experimento que demostrase si las mutaciones eran espontáneas o no. Entonces, en el transcurso de la celebración de un baile en la Universidad de Indiana, Luria tuvo su "momento eureka".


Durante una pausa de la música, me encontré observando a un colega que estaba echando monedas en una máquina tragaperras. A pesar de que perdía la mayor parte de las veces, ocasionalmente ganaba alguna moneda. Como no me gustan las apuestas, le sermoneé sobre la inevitabilidad de que iba a perder más dinero del que iba a ganar cuando de repente consiguió un pleno... recogió sus ganancias, me dirigió una mirada desafiante y se fue. En ese momento comencé a pensar sobre la numerología de las máquinas tragaperras. Al hacerlo me di cuenta de que las tragaperras y las mutaciones bacterianas tenían algo en común. (Extracto de la autobiografía de Luria: " Máquinas tragaperras y tubos de ensayo rotos")


Luria volvió a su laboratorio y preparó un gran número de cultivos bacterianos conteniendo cada uno de ellos una pequeña cantidad de inóculo. A cada uno de dichos cultivos le añadió un inóculo de bacteriófago (ver más abajo un esquema explicativo del experimento). Luria razonó de la siguiente forma: si las mutaciones se producían de manera dirigida como respuesta a la presencia del fago, tal y como el Lamarquismo supone, entonces el número de bacterias supervivientes debería ser muy parecido entre los cultivos, pues todos ellos producirían mutantes resistentes en pequeño número (Panel superior de la figura 1). Si por el contrario las mutaciones eran espontáneas, entonces su distribución sería al azar y serían semejantes a acertar un pleno en una máquina tragaperras. En ese caso, el número de bacterias supervivientes debería ser pequeño en la mayoría de los cúltivos, pero en algunos pocos cultivos dicho número de supervivientes debería ser grande (Panel inferior de la figura 1).





Figura 1: Resultados esperables en el caso de que la mutación fuera dirigida (caracter post-adaptativo) por un cambio ambiental, o si fuera espontánea (caracter pre-adaptativo). El cambio ambiental en el experimento de Luria y Delbruck consistía en la adición de un virus bacteriófago (línea de puntos). En rojo se indican las bacterias resistentes. En el caso de que la mutación fuera como una adaptación fisiológica (arriba) las medias y la varianza son muy parecidas. Si la mutación es al azar (abajo) las medias y varianzas son muy desiguales



Debajo se muestra la figura 2 del artículo original de Luria y Delbruck. En ella puede verse que el número de "plenos" (>9 resistant bacteria) es mayor que el esperado. Los experimentos de Luria y Delbruck demostraron inequivocamente que las mutaciones eran espontáneas y mostraron la importancia del papel del azar y de la historia de un ser vivo en la biología evolutiva clavando el último clavo en el ataud del lamarquismo (*).


La razón por la que se ha seleccionado el Test de Fluctuación como la cita clásica de la semana es por un reciente intercambio de impresiones con Rich Lenski de las que parte de ellas son reproducidas a continuación.

Siempre me ha fascinado la tensión entre el azar y la necesidad, entre la suerte y la repetibilidad. De niño adoraba los juegos con dados y cartas que requerían suerte y habilidad al mismo tiempo. Posteriormente, cuando asistí al Oberlin College, me matriculé en un maravilloso curso en el que el libro de texto utilizado era el libro "Molecular Genetics: an Introductory Narrative" de Gunther Stent. Al contrario que otros libros de ciencia, este se centraba en la historia de quién hacia un experimento y porqué lo hacia. Recuerdo la lectura sobre el "test de Fluctuación" desarrollado por Salvador Luria y Max Delbruck y como trataban de darle sentido y de repente teniendo aquel "momento eureka" cuando todo el experimento cobró sentido ante mi. Es mi experimento favorito de todos los tiempos, y hasta el día de hoy, cuando pienso en él, aun me maravillo no solo por su elegancia, sino también por la sutileza de la onterpretación y por la apreciación del porqué de la dificultad del problema hasta que ellos realizaron el experimento. Como bien sabes, uno de los puntos principales del Experimento de Evolución a Largo Plazo con E. coli es entender la repetibilidad de la evolución que surge de la tensión entre mutación al azar por un lado y el proceso sistemático de la selección natural por el otro lado. Esto empuja a las poblaciones hacia una mayor aptitud (fitness) en los ambientes en los que ellas viven. Luego, en un cierto sentido, uno puede pensar que mi Experimento de Evolución a Largo Plazo es un descendiente del Test de Fluctuación. Un descenciente que examina el papel de la mutación al azar en producir variación estadisticamente cuantificable entre linajes replicados, no en cultivos overnight (**), sino entre cultivos con más de 40.000 generaciones de evolución separada.


Es precisamente esta azarosidad de la evolución la que ha conducido a Lenski y sus colegas a su último descubrimiento, en el que tras 33127 generaciones, una cepa de E. coli ha evolucionado y ahora es capaz de asimilar el citrato. Carl Zimmer fue el que cubrió dicha
historia.


Lenski ha tenido también una reciente discusión con los IDiots(***), y su tolerante respuesta puede encontrarse aquí.


Hasta aquí el comentario de John Dennehy. Algunas aclaraciones para los no expertos en Biología o aquellos estudiantes que aun no les hayan explicado el famoso experimento.


- Una página web de la Universidad Complutense bastante buena sobre la mutación.


- El experimento de Luria y Delbruck:

Luria tomó una colonia y con ella estableció dos cultivos. El cultivo A lo dividió a su vez en 20 cultivos más pequeños. Los 21 cultivos (20 cultivitos A más el cultivo B) y se dejaron crecer durante toda la noche (overnight). Al día siguiente se tomó una muestra de cada uno de los 20 cultivos A y se le añadio el bacteriófago. El cultivo B fue dividido en 20 alícuotas y a cada una de ellas se le añadió el bacteriófago. Posteriormente se determinó el número de bacterias resistentes al fago en los cultivos A y en los cultivos B. Tal y como se ha explicado antes, si la mutación fuera una adaptación fisiológica las medias y varianzad de los cultivos A serían similares a las de las muestras del cultivo B. Sin embargo los resultados fueron muy diferentes, luego la mutación era al azar y tenía un carácter post-adaptativo


(*) Desafortunadamente el Lamarckismo se resiste a morir. De vez en cuando se lee alguna noticia sobre la herencia de caractéres adquiridos que luego queda desacredita, por lo que el experimento de Luria y Delbruck no es el "último clavo".

(**)Cultivo overnight. En los laboratorios que trabajan con la bacteria E. coli generalmente se suele inocular el cultivo por las tardes y se deja crecer el cultivo durante toda la noche (overnight). Generalmente han pasado al menos unas 20 a 30 generaciones y el cultivo suele encontrarse en la fase estacionaria.

(***) IDiots. ID = Inteligent Design. He optado por dejar el termino original. Es una forma despectiva de referirse a los defensores del Diseño Inteligente. Aunque considero que en el plano científico el Diseño Inteligente es una tontería del mismo calibre que aquellos que defienden que la Tierra es plana, también pienso que utilizar un término despectivo para referirse a aquellos que no comparten nuestro punto de vista es caer en un error bastante grave.



Audio en "El podcast del microbio"


.

jueves, 10 de julio de 2008

Intraterrestres



Una de las obras más famosas de Julio Verne es "Viaje al centro de la Tierra". Para cualquiera que haya leído el libro, o visto una de las muchas versiones cinematográficas, no le costará recordar que los valerosos exploradores se metían por un volcán e iban encontrando formas de vida prehistóricas como los plesiosauros, según iban descendiendo en las profundidades terrestres. Lo cierto es que Verne no parecía andar muy desencaminado. Los volcanes tienen que ver con esta historia. Y si profundizamos en la corteza terrestre vamos encontrando formas vivas, pero no son gigantescas criaturas, sino microorganismos.


Almohadas de basalto de los fondos oceánicos.


Por ahora los microorganismos mejor estudiados son los de la corteza de los fondos marinos que aquellos que viven en la roca profundos. El motivo es simple, son más fáciles de recolectar. Además, en los fondos marinos se encuentran las dorsales oceánicas, los lugares donde se forma la nueva corteza terrestre. Los volcanes submarinos que forman dichas dorsales no paran de vomitar roca fundida que en contacto con el agua se enfría rápidamente y forma las conocidas como almohadas de basalto. Debido al rápido enfriamiento tienen una corteza formada por cristal basáltico. Estas rocas son ricas en compuestos inorgánicos reducidos y eso es una fuente de energía que pueden aprovechar los microorganismos quimiolitotrofos. De hecho, en el laboratorio se pudo comprobar este último aserto. Sin embargo quedaba comprobarlo en el fondo marino. Y claro, no es fácil trabajar a profundidades de más 5.000 metros y con presiones casi 600 veces mayores de la que tenemos a nivel del mar.


Imagen de perforaciones tubulares formadas en la corteza cristalina de una almohada basáltica. Se piensa que estas perforaciones han sido producidas por microorganismos quimiolitotrofos que se "comerían" dicho cristal.


El caso es que se ha podido hacer, aunque indirectamente. En la revista Nature se publicó recientemente un estudio en el cual se demostraba la gran abundancia de microorganismos en las rocas basálticas de dichas dorsales. Los investigadores utilizaron una combinación de tres técnicas: PCR cuantitativo, microscopía e hibridación de ácidos nucleicos in situ. Mediante dichas técnicas han determinado que hay entre 1.000 a 10.000 veces más microorganismos en los fondos basálticos que en el agua que los cubre.




Microscopía de fluorescencia de una muestra con microorganismos endolíticos (endolítico = dentro de la piedra). En verde fluoresce el mineral y en rojo las bacterias




No sólo eso. También han encontrado que la biodiversidad es completamente distinta. En el agua de los fondos marinos hay entre 8.000 a 90.000 microorganismos por mililitro. La mitad de ellos pertenecen al dominio Bacteria y la otra mitad al dominio Archaea. En las rocas basálticas se han encontrado con densidades entre 3 y 1000 millones por gramo de roca. Y más del 90% de dichos microorganismos pertenecen al dominio Bacteria. Y de estas, casi todas son de las gamma-proteobacteria.

¿Y eso es mucho o poco? Pues para hacernos una idea, el número de microorganismos que hay en el suelo agrícola es superior a los 10.000 millones. Así que el basalto quizás no sea un jardín del Edén bacteriano, pero tampoco es un sitio pobre e inhóspito.

¿Y que hay de comer para que haya tantos microorganismos? Pues esa es una buena pregunta pero que todavía no tiene respuesta. Se cree que la base de la pirámide trófica son microorganismos quimiolitotrofos o mixotrofos que oxidarían el azufre, el hierro y el manganeso presentes en el cristal basáltico. En el laboratorio eso está confirmado experimentalmente. Pero en la Naturaleza ... Digamos que por ahora no. De todas formas, se ha calculado el impacto en los ciclos biogeoquímicos de dichos microorganismos intraterrestres y al parecer podrían ser los responsables de la fijación anual de unas 500.000 toneladas de carbono.

No está nada mal para unos seres que hasta hace poco ni siquiera sabíamos de su existencia.



Enlaces relacionados con el tema: Intraterrestres (2ª parte)

Esta entrada ha sido traducida al inglés y seleccionada por el blog de la ASM "Small things considered" a cargo de Moselio Schaeter.




.

martes, 1 de julio de 2008

Matar bacterias a laserazos




No, no se trata de una nueva saga de ciencia-ficción. Un grupo de la University College London está desarrollando una nueva técnica terapéutica para tratar las heridas infecctadas por microorganismos resistentes a los antibióticos.

Una de las preocupaciones principales en el tratamiento de heridas y quemaduras es que estas se infecten. El tratamiento rutinario es la administración preventiva de antibióticos, pero si uno tiene la mala suerte de estar infectado con un microorganismo resistente a los antibióticos entonces tiene un serio problema. El tratamiento puede ser largo, costoso y lo que es peor, inefectivo.

El Dr. Michael Wilson y su grupo han desarrollado esta nueva estrategia para luchar contra los microorganismos patógenos pero sin que estos desarrollen fácilmente una resistencia que la anule. La técnica ha sido probada in vitro usando cultivos de Staphylococcus aureus, Streptococcus pyogenes y Pseudomonas aeruginosa a los que se añadía el colorante verde de indocianina. Este colorante es inocuo para los humanos (de hecho se usa en angiografía de fluorescencia), y también para las bacterias. Este colorante es absorbido rápidamente por estas últimas.

Verde de Indocianina


Y ahora viene la segunda parte. Si tras la administración del colorante irradiamos con un laser "cerca de infrarrojo" que emite en 808 nm, la molécula verde de indocyanina absorbe dicha energía y se activa. Y cuando lo hace se convierte en una sustancia que produce una gran cantidad de radicales reactivos del oxígeno que atacan a diversos componentes de la bacteria causando su destrucción. El mecanismo de acción de los radicales es muy inespecífico, por lo que en principio no se espera que se desarrollen resistencias, aunque no podemos olvidar que algunas bacterias poseen pigmentos que precisamente inactivan a esos radicales. Sin embargo esos pigmentos suelen estar localizados en las envolturas bacterianas y no en el citoplasma.


Los investigadores avisan que estos resultados han sido obtenidos en condiciones de laboratorio, y que el siguiente paso será probar la eficacia in vivo utilizando animales de laboratorio y cepas de los llamados "superbichos" como el MRSA.


Blancanieves y los siete marcianitos


Hace poco comenté que la nave Phoenix estaba en plena recogida de pruebas de la superficie marciana y el miedo que había de que dichas pruebas indicaran una contaminación debida a la manipulación en la Tierra.

El caso es que han empezado a llegar noticias sobre dichas pruebas y los resultados son ni buenos ni malos, sino todo lo contrario.

Para empezar las buenas noticias. Según publica Nature, al parecer el suelo marciano sobre el que se posó Phoenix es muy parecido al de la Antartida. La nave ha tomado muestra cavando unas pequeñas trincheras que han recibido el nombre de "Blancanieves" 1, 2 y 3. Los análisis han mostrado que el polo marcianao tiene agua, pero poca, es alcalino y contiene sales. Las sales son una prueba más de que la actividad del agua es importante. Segun Sam Kounaves de la Universidad de Tufts, lo más sorprendente sobre Marte es que no parece un mundo alienígena, sino que en muchos aspectos, como la mineralogía, se parece mucho a la Tierra.




Imagen que muestra las pequeñas trincheras llamadas "Blancanieves 1" (izquierda), "Blancanieves 2" (derecha) y dentro de esta última la pequeña "Blancanieves 3". El sitio de excavación ha sido bautizado como "el País de las Maravillas"


Tengamos en cuenta que en la Antartida hay microorganismos. Son los conocidos como psicrófilos extremos, (o amantes del frío extremo). Dentro de estos los más extraños son los habitantes del lago Vostok, uno de ellos incluso ha sido bautizado como Klingon. Y uno puede pensar que si la mineralogía marciana es similar a la terrestre, quizás los parecidos no se acaben ahí. De hecho el suelo marciano podría mantener vida si estuviera en la Tierra. Incluso vida pluricelular.






Imagen de un tardigrado de los suelos de la Antartida



Y ahora las malas. A falta de los análisis del TEGA parece que la cantidad de carbono detectado es escasa. Otra dificultad para la vida marciana sería el hecho de que la atmósfera es demasiado tenue, y las condiciones tan duras que en comparación, la Antartida terrestre sería un paraíso primaveral.

Bueno, confiemos en que Phoenix sea capaz de encontrar a los siete enanitos en alguna de las "Blancanieves".



Links relacionados: Martian Microbes: remember we are friends