Uno es la tasa de reproducción de la infección conocida por la abreviatura Ro (R subcero). Se define por el número de nuevas infecciones producidas a partir de un individuo ya infectado. Cuanto más alto, peor para la especie humana. En el caso de la gripe estacional, Ro tiene unos valores que oscilan entre 1,5 a 3, la pandemia de 1918 era de 4, y el del sarampión es de 15. Los últimos análisis realizados parecen indicar que el virus de la gripe A (H1N1) se está extendiendo de manera similar a pandemias anteriores. Según publica la revista Science, se estima que a finales de abril había unos 23.000 infectados en México (con un intervalo entre 6.000 a 32.000) mientras que la mortalidad se estima en 0,4% (con un rango de 0,3 a 1,5%). El Ro tendría unos valores estimados de entre 1,4 y 1,6. Si se confirman los resultados el escenario sería parecido al de la pandemia de gripe asiática de 1957.
El genoma del virus de la gripe está compuesto de ocho cadenas o segmentos de RNA monocatenario de polaridad negativa. Con un total aproximado de 13.600 bases es capaz de codificar para diez proteínas, aunque se ha descubierto recientemente que algunas cepas producen la proteína PB1-F2 que induce apoptosis en la célula hospedadora.
Los 8 segmentos de RNA con las proteínas que codifican cada uno son:
- HA que codifica para la Hemaglutinina
- NA codifica la Neuraminidasa
- NP codifica la nucleoproteína que envuelve a los fragmentos de RNA.
- M, codifica para dos proteínas matriciales: la M1 y la M2
- NS, codifica dos proteínas no-estructurales: NS1 y NEP encargadas del transporte intracelular de los componentes virales
- PB1, codifica la primera subunidad de la RNA pol y la proteína PB1-F2.
- PB2, codifica la segunda subunidad de la RNA pol
- PA, codifica otra subunidad de la RNA polimerasa que replicará el genoma viral
Las pruebas de identificación basadas en anticuerpos generalmente reconocen a la hemaglutinina, la neuraminidasa y a las proteínas matriciales. Para una identificación más fina se utilizan técnicas de biología molecular en las que se acaba secuenciando los genes virales.
El hecho de que el genoma del virus este fragmentado permite un gran intercambio de genes en el caso de que dos cepas distintas infecten la misma célula simultáneamente. De esa forma se pueden generar nuevas cepas. Y esto puede suceder más de una vez con lo que uno puede acabar encontrándose a algo parecido al actual virus de la gripe A (H1N1) en el que, con los diferentes aislados secuenciados, se han identificado aportaciones de hasta cuatro virus gripales distintos:
En azul: Proteínas codificadas por los segmentos HA, NP y NS del virus de la gripe porcina (H1) norteamericana.
En verde: Proteína codificada por el segmento NA del virus de la gripe porcina (N1) europea
En morado: Proteínas codificadas por el segmento M de un virus de gripe porcina eurasiática.
En rojo: Proteínas codificadas por los segmentos PA y PB2 del virus de la gripe aviar norteamericana
En negro: Proteína codificada por el segmento PB1 de un virus de gripe humana H3N2 aislado en 1993
Al parecer la nueva cepa es el resultado de una recombinación de dos cepas de virus de la gripe porcina, uno norteamericano y otro europeo que han estado circulando independientemente durante más de 10 años antes de mezclarse y dar el salto a los humanos. Pero a su vez la cepa norteamericana era el producto de una recombinación anterior sucedida hace 10 años y que portaba una cadena PB2 de origen aviar y una cadena PB1 de origen humano detectada por primera vez en 1993.
Se piensa que el evento que ha producido esta nueva cepa de virus sucedió en algún momento entre septiembre de 2008 y el comienzo de 2009. El hecho de que el virus no haya sido detectado hasta ahora puede ser debido a su relativamente baja virulencia. Se ha encontrado que seis de los segmentos de RNA provienen de una cepa norteamericana de gripe porcina. Los otros dos segmentos provienen de cepas euroasiáticas de gripe porcina. Ambas cepas parentales contienen genes de virus de la gripe que previamente se habían descrito en virus que infectaban a humanos y aves. Según Nancy Cox, directora de la división de la gripe del CDC de Atlanta, por ahora todos los aislados virales estudiados son identicos en un 99 a un 100%. Eso son buenas noticias pues indicaría que el virus es muy estable genéticamente y sería fácil de producir una vacuna. Otra buena noticia es que no han encontrado ningún marcador genético de virulencia similar a los que se han descrito para el virus de la pandemia de 1918.