Hoy se cumple el primer aniversario de la muerte de Carl Woese, uno de los científicos de los que puede decirse eso de que "sus descubrimientos cambiaron los libros de texto". Bueno, ahora parece que algo parecido está sucediendo con su más famosa hipótesis, y probablemente dentro de poco habrá que volver a cambiar los libros de texto.
Ya hemos comentado en este blog que en 1977 Woese y Fox presentaron su árbol filogenético de tres ramas. El árbol fue construido al comparar la secuencia del ARN ribosómico, una macromolécula presente en todos los seres vivos. Evidentemente fueron muchos los grupos que se lanzaron bien a confirmar, o bien a rechazar la hipótesis mediante la realización de diversos experimentos y observaciones.
Uno de esos grupos fue el del profesor James A. Lake, de la Universidad de California Los Angeles. Lake también se fijo en los ribosomas, pero en lugar de comparar sólo las secuencias de ARN ribosomal, se fijo en la estructura de la macromolécula completa. En concordancia a los resultados de Woese, encontró que los ribosomas bacterianos eran muy distintos de los ribosomas eucariotas y de las arqueas. Pero al comparar los ribosomas de eucariotas y arqueas se encontró con algo inesperado. Los ribosomas eucariotas se parecían bastante a un tipo de arqueas (las crenoarqueas pero en ese tiempo se las conocía como los eocitos), pero no a otro (las euryarqueas, el grupo de los metanógenos y los halófilos extremos).
Así que propuso otra explicación para explicar el origen de los eucariotas: la hipótesis del eocito. La diferencia fundamental entre ambas hipótesis es la siguiente. El árbol de Woese consta de tres ramas principales: Bacteria, Archaea y Eukarya. El árbol de Lake solo consta de dos ramas: Bacteria y Archaea, y dentro de la rama "Archaea" los eucariotas serían una rama secundaria más.
¿Quién tiene razón? Pues inicialmente la hipótesis que parecía más correcta era la de Woese, y de hecho es la que nos encontramos en los libros de texto más usados en microbiología como son el Brock y el Prescott. Pero desde la revolución genómica cada vez se están acumulando más datos de secuencias de genómas completos de diversos microorganismos y parece que es la hipótesis del eocito la que se está viendo confirmada, al menos según una reciente revisión que ha sido publicada en la revista Nature. Vamos a resumirla.
Comparación de secuencias
El árbol de los tres dominios se vio apoyado inicialmente por los datos de comparación de secuencias debido a que había muy pocas disponibles. Como ya he comentado antes, cada vez se están acumulando más datos genómicos. Esa circunstancia ha obligado a desarrollar nuevos métodos de análisis bioinformático. En cierto sentido en el campo de la bioinformática esta pasando algo muy similar a lo del problema de la "clasificación del murciélago" (¿es un ave porque vuela o un mamífero porque tiene mamas?). Dependiendo del método de comparación o del gen que se compara, una serie de parecidos entre las secuencias parecen tener más peso que otros, y así uno puede conseguir que le salga un árbol de tres dominios o uno de dos dominios. Añadamos a eso que a veces pueden suceder artefactos debidos a la técnica experimental de comparación. Un ejemplo de eso es lo que se conoce como la "atracción de las grandes ramas" en las que las secuencias que están en el interior de una gran rama tienden a parecer mucho más relacionadas entre sí, independientemente de su historia evolutiva. Como los programas bioinformáticos son cada vez más refinados y están diseñados para evitar o minimizar esos artefactos, lo que se está viendo es que los árboles se ajustan mejor al modelo de dos ramas del eocito.
Comparación de los "Core-genes" implicados en la producción de proteínas
Cuando Woese eligió hacer la comparación usando el ARN ribosomal lo hizo porque esta molécula está presente en uno de los procesos más conservados de la vida: la biosíntesis proteica. Pero ahora se pueden comparar no sólo los ARN ribosomales, sino todas las proteínas que están involucradas en dicho proceso, sobre todo aquellas proteínas que forman parte del ribosoma. Es lo que se conocen como los genes principales o core-genes, y evidentemente están muy conservados. Se asume que son unos 39 genes (depende de las preferencias del investigador). Aunque aquí también hay problemas dependiendo del método de comparación que use. En un trabajo publicado en el 2001 se comparaban los genes y el cómo estaban agrupados y se postuló que el árbol del eocito era el correcto. Pero en el 2006 apareció otro trabajo en el que primero se alineaban las secuencias dentro de cada grupo (bacteria con bacteria, arquea con arquea y eucariota con eucariota) y luego se combinaban para la comparación final, obteniéndose así un árbol con tres dominios. Al igual de lo que se ha indicado en el apartado anterior, usando métodos de comparación más refinados, los árboles que se obtienen son de dos ramas y no de tres.
Nuevos linajes de arqueas
Una consecuencia del uso de métodos metagenómicos en el análisis de muestras ambientales es que nos ha permitido conocer la existencia de microorganismos que ni siquiera ha sido posible cultivarlos en el laboratorio. Y con ello han aparecido linajes totalmente nuevos que han permitido “romper” las grandes ramas. Es el caso de los phylum Korarchaeota, Thaumarchaeota y Aigarchaeota. Estos tres phylum están relacionados con el phylum Crenarchaeota, por lo que se les conoce de manera informal como el super-filum TACK para así distinguirlos de los Euryarchaeota. Pues bien, una gran parte de los genes homólogos entre los eucariotas y las arqueas está dentro de este grupo, incluyendo los homólogos de la actina y la tubulina, el sistema de la ubiquitina, y una gran parte de los genes de la maquinaria ribosómica. Sin embargo dichos parecidos no se encuentran en un solo representante del grupo TACK, sino que están repartidos entre todos ellos, lo que puede explicarse por procesos de pérdida de genes o por procesos de transferencia genética horizontal (HGT).
Endosimbiosis, procesos de transferencia genética horizontal e historia de la vida
Tanto la hipótesis de los tres dominios como la del eocito contemplan el cómo la endosimbiosis y los procesos HGT han influido en la evolución y en la aparición del linaje eucariota, pero se diferencian en el cuándo han sucedido. Lo que parece claro es que los genes involucrados en procesos de transcripción y traducción (core-genes) no se han visto afectados por procesos HGT tan frecuentemente como genes involucrados en procesos metabólicos, así que el estudio de cómo se heredaron de manera vertical nos debe de dar información sobre cuándo aparecieron los distintos linajes. Para la hipótesis de los tres dominios, la aparición de los eucariotas fue algo que sucedió muy tempranamente y por ello dicho linaje celular está al mismo nivel que el dominio Arquea. En cambio, según la hipótesis del eocito los eucariotas son un grupo relativamente joven ya que sus "core-genes" se originaron dentro del linaje Arquea.
En cuanto a la endosimbiosis que dio lugar a las mitocondrias y a los cloroplastos, parece claro que debió suceder después de que hubieran aparecido las alfaproteobacterias y las proclorofitas. Se ha llegado a postular que la endosimbiosis que dio lugar a las mitocondrias fue anterior a la aparición del núcleo, y que fue precisamente ese evento lo que originó la aparición del linaje eucariota. En ese caso, dicho evento tuvo que suceder mucho después de lo que indica el árbol con tres dominios, algo que se contempla en la hipótesis del eocito.
Registro fósil y aparición de los eucariotas
El primer fósil que es indiscutiblemente eucariota es un alga roja de las bangiophytas que ha sido datada entre los 1200 y los 720 millones de años. Hay sin embargo otros candidatos que aparecen en rocas con 1800 millones de años de edad. Esto es consistente con los datos de biología molecular que señalan que el último ancestro común de los eucariotas apareció entre los 1900 y los 1700 millones de años. Sin embargo, sabemos que los procariotas fotosintéticos que formaron los primeros estromatolitos aparecieron hace 3400 millones de años, y las primeras arqueas metanógenas (Euryarchaetoa) produjeron metano que quedó en el registro fósil hace ya 3500 millones de años. Esto indica que los dos linajes procariotas aparecieron casi dos mil millones de años antes de que aparecieran los eucariotas. De nuevo, este dato parece apuntar a la hipótesis del eocito más que a la de los tres dominios.
Membranas celulares
Este es el único aspecto que parece mejor explicado por el árbol de los tres dominios que por la hipótesis del eocito. Las bacterias y los eucariotas tienen en común que los fosfolípidos de sus membranas celulares presentan enlaces éster, mientras que los fosfolípidos de todas las arqueas contienen enlaces éter. Lo cierto es que la aparición de las membranas biológicas en la historia de la vida es un asunto que no está aún muy claro, y de hecho se ha llegado a proponer que la vida apareció en estructuras de origen mineral y que luego se formaron las membranas dando lugar a las células modernas. En el caso de la hipótesis del eocito habría que explicar como una arquea del grupo TACK que realiza una endosimbiosis con una alfaproteobacteria, cambió su sistema de membranas biológicas del "estilo arquea" al "estilo bacteria".
Conclusiones
Si el árbol del eocito es correcto, entonces el grupo TACK de las arqueas contiene las pistas para explicar el origen de los eucariotas y de las complejas estructuras intracelulares que contienen. Al mismo tiempo, permite rechazar la hipótesis de que los eucariotas son un linaje celular primordial, dejando tan solo dos dominios primarios: Archaea y Bacteria.
Origen de la imagen: Zazzle
Esta entrada participa en el XXVII carnaval de la Biología alojado en el blog La aventura de la ciencia
Woese CR, & Fox GE (1977). Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proceedings of the National Academy of Sciences of the United States of America, 74 (11), 5088-90 PMID: 270744
Williams TA, Foster PG, Cox CJ, & Embley TM (2013). An archaeal origin of eukaryotes supports only two primary domains of life. Nature, 504 (7479), 231-6 PMID: 24336283
Cox CJ, Foster PG, Hirt RP, Harris SR, & Embley TM (2008). The archaebacterial origin of eukaryotes. Proceedings of the National Academy of Sciences of the United States of America, 105 (51), 20356-61 PMID: 19073919
Lake JA, Henderson E, Oakes M, & Clark MW (1984). Eocytes: a new ribosome structure indicates a kingdom with a close relationship to eukaryotes. Proceedings of the National Academy of Sciences of the United States of America, 81 (12), 3786-90 PMID: 6587394