Bienvenidos. Este blog está dedicado a la Microbiología pero en general cualquier tema científico de interés tambien puede aparecer. El contenido de este blog es estrictamente científico y docente, por lo que no es un consultorio de salud. No estoy ni capacitado ni autorizado para responder a consultas de carácter médico-sanitario que expongan casos personales. Las imágenes que aparecen están sacadas de sitios públicos de la web y se indica su origen o basta cliquear sobre ellas para saberlo, pero si hay algún problema de copyright, por favor indicarlo en comentarios y se retirarán.

Para ir al blog de
PROBLEMAS DE MICROBIOLOGIA o al PODCAST DEL MICROBIO , pincha sobre el nombre.

jueves, 27 de noviembre de 2008

Las levaduras y la fuente de la eterna juventud.



Las Tres Edades de la Mujer de Gustav Klimt.




Actualización septiembre 2011. El papel de las sirtuinas ha sido puesto en duda: ver en Biounalm


El envejecimiento no es algo raro para la experiencia humana. Es un proceso natural que también ocurre todas las formas vivas, incluso en las unicelulares como las levaduras. Generalmente una levadura recién nacida podrá dar lugar a una veintena de congéneres suyas mediante el proceso de gemación. Una vez hecho esto, la levadura deja de reproducirse y acaba muriendo.



Modelos de envejecimiento: la levadura Saccharomyces cerviseae, el gusano Caenorhabditis elegans, la mosca Drosophila melanogaster y el ratón Mus musculus.


Como las levaduras son el modelo por excelencia de las células eucariotas, más de un investigador se ha preguntado si el proceso de envejecimiento que se observa en dichos hongos unicelulares tiene paralelismos con el de las células animales. La hipótesis no es descabellada porque ya ha dado sus frutos en más de una ocasión, como es el caso de los genes que controlan el ciclo celular. Y comprender los procesos de envejecimiento es la base del desarrollo de fármacos anti-edad. El Dr. David Sinclair y unos cuantos colegas fundaron la pequeña compañía Sirtris Pharmaceuticals con dicho objetivo en mente.




Modelo Trdimensional de la Sirtuina


La proteína Sir2, o sirtuina, es una enzima con actividad deacetiladora de histonas, que fue descrita por primera vez en levaduras y cuya función es la de un centinela que debe de proteger el genoma. Está involucrada en silenciar la expresión genética de determinadas zonas y evitar una expresión descontrolada de los genes que allí se encuentren. También bloquea los reordenamientos cromosómicos que a veces ocurren en zonas con DNA muy repetitivo. Y eso lo hace disponiéndose en esos lugares como si hubiera una especie de "garitas". Cuando se produce un daño en el DNA que rompe su molécula, la sirtuina deja los lugares que está "protegiendo" y se coloca en aquellos donde se ha producido el daño. Cuanta más edad tiene un organismo, más daños tiene el DNA y más sirtuina deja sus "garitas" para disponerse en las zonas dañadas. Las zonas que han sido desprotegidas comienzan a expresar sus genes por lo que la se observa un cambio en la pauta de expresión genética muy característico en los procesos de envejecimiento. Cuando se incrementan los niveles de Sir2, las levaduras envejecen más lentamente.





Envejecimiento de la levadura. Ségún van fomándose nuevas células hijas el fenotipo de la célula madre va cambiando hasta que finalmente se vuelve esteril


Las sirtuinas son una familia de proteínas que están presentes en todos los dominios de la vida, entre ellos los mamíferos pero sus funciones no eran muy bien comprendidas hasta ahora. En la revista Nature se anuncia que Sinclair y sus colegas han encontrado que los mamíferos no solo tienen ese mismo tipo de proteína sino que además parece cumplir la misma función que en levaduras. Evidentemente el descubrimiento no ha pasado desapercibido a las grandes compañías y Sirtris Pharmaceuticals ha sido comprada por el gigante farmacéutico GlaxoSmithKline por 720 millones de dólares.

Lo que han encontrado es que la sirtuina de ratón, denominada SIRT1, se comporta como la proteína de levadura Sir2. En el ratón, SIRT1 está unida a secuencias de DNA repetitivo y zonas cuya expresión génica está silenciada. Los investigadores utilizaron cultivos de células embrionarias. Si las células son expuestas a la acción de una solución de agua oxigenada, se producen daños en el DNA y las proteínas SIRT1 dejan sus "garitas" para unirse a las zonas dañadas. Al comparar los patrones de expresión génica de las células embrionarias dañadas con los patrones de expresión de células de ratones ancianos, encontraron que ambos eran semejantes.


El siguiente paso de Sinclair y sus colegas será incrementar la expresión de SIRT1 en ratones envejecidos y comprobar si los patrones cambian a una fase más "juvenil", lo que significaría que si podrían revertir los efectos de la edad. Y evidentemente sería el paso previo para desarrollar verdaderos medicamentos anti-edad, no cosméticos.






ResearchBlogging.org

OBERDOERFFER, P., MICHAN, S., MCVAY, M., MOSTOSLAVSKY, R., VANN, J., PARK, S., HARTLERODE, A., STEGMULLER, J., HAFNER, A., & LOERCH, P. (2008). SIRT1 Redistribution on Chromatin Promotes Genomic Stability but Alters Gene Expression during Aging Cell, 135 (5), 907-918 DOI: 10.1016/j.cell.2008.10.025

jueves, 20 de noviembre de 2008

División se escribe sin Z


Desde la rueda hasta la turbina la humanidad se ha inventado un buen número de máquinas para realizar trabajos mecánicos muy diversos, por lo que parece natural que la misma función, como impulsar un coche, pueda hacerse con motores de diseños muy diferentes. También en las distintas células se puede hacer una misma función utilizando maquinarias de diferentes diseños. Así como la mayoría de los coches utilizan un motor de gasolina, la mayoría de los microbios y muchos orgánulos como los cloroplastos, para llevar a cabo la división en dos, utilizan un elemento común, la proteína FtsZ.







Distribución filogénetica simplificada de la proteína FtsZ.
Esta proteína es imprescindible para la división celular de un gran número de bacterias, arqueas y orgánulos.




Sin embargo hay vehículos que en vez de un motor de gasolina usan un motor eléctrico o incluso una caldera a vapor como las locomotoras. De hecho hay microbios que prescinden por completo de FtsZ y utilizan otro sistema para realizar su división. Ya se sabía que algunos parásitos intracelulares, como Chlamydia, carecen de dicha proteína. ahora se les une un importante grupo de arqueas, las Crenarchaeotas a las que pertenece Sulfolobus acidocaldarius, la especie en la que se ha hecho el descubrimiento.







Un hogar muy especial.

El jardín de las delicias de Sulfolobus acidocaldarius para nosotros sería mas bien un infierno, casi hirviendo a 80ºC y bastante ácido a pH 2. Su hogar, en las solfataras, se asemeja asombrosamente a las calderas de Pedro Botero ilustradas en el Hortus deliciarum, un manuscrito medieval compilado por Herrad def Landsberg entre 1167 y 1185.




¿Qué es y qué hace FtsZ?
FtsZ es una proteína con estructura y propiedades muy parecidas a la Tubulina, la proteína que en las células eucariotas como las humanas, forma los microtúbulos del citoesqueleto. Estos microtúbulos son los encargados de procesos tan importantes como el tráfico de vesículas por el citoplasma y del reparto de los cromososmas durante la mitosis. En la división de bacterias y de orgánulos de origen bacteriano, FtsZ se coloca en el centro de la célula y dirige el ensamblaje de todos los componentes que integran un anillo que ejecuta la constricción de la membrana celular. FtsZ es una proteína esencial, es decir que si una bacteria no la puede producir queda condenada a crecer sin poder dividirse, lo mismo que le ocurre a un cloroplasto privado de ella.




Estructura tridimensional de FtsZ y Tubulina.

Pese a que funcionan en procesos diferentes, las dos proteínas tienen una gran similitud estructural, que reside no tanto en los aminoácidos que componen sus secuencias, sino en el tipo de estructuras en hélice y lámina que adoptan.



¿Cómo lo hacen algunas arqueas?
Ahora mismo se reconoce que los microorganismos pertenecientes al Dominio Archaea están divididos en dos tipos distintos o phyla: Crenarchaeota y Euryarchaeota, aunque es probable que dentro de poco haya más tipos. Los euryarqueotas incluyen a los metanógenos y a las arqueas de ambientes hipersalinos mientras que los crenarqueotas son microorganismos termófilos e hipertermófilos. Pues bien, sólo los euryarqueotas parecían utilizar un mecanismo de división celular basado en el anillo contráctil de la proteína FtsZ. Es el caso de la arquea halófila Haloferax volcanii.


La división sin Z.
Por eso resultaba chocante no encontrar FtsZ, o algo muy similar, en las crenarqueas. Un grupo de investigadores de la Universidad de Uppsala, ha resuelto ahora este enigma: las crenarqueas sin FtsZ, han montado su maquinaria de división basándose en proteínas por completo diferentes a las de las bacterias y a las de sus primas las euryarqueas. Estas proteínas muestran homología con un tipo de proteínas eucariotas. La sorpresa es que no se parecen para nada a la Tubulina, y tampoco a la actina o la miosina, proteínas que participan en la división de eucariotas. Se parecen a las proteínas involucradas en la formación de vesículas endosomales a partir del retículo endoplasmático, o en la liberación de virus como el VIH.

Rolf Bernander y sus colaboradores han identificado tres proteínas de Sulfolobus acidocaldarius, denominadas CdvA, CdvB y CdvC, que se producen en el momento correcto en el que se predice comienza la división. Además, y como ocurre con varias de las proteínas que las bacterias utilizan para dividirse, los genes que las codifican están pegados en el mismo lugar del genoma.

Se les ha llamado operón cdv, un acrónimo de "celular-división". Dentro del trío, las proteínas CdvB y CdvC, son las que tienen homología con las proteínas eucariotas del complejo ESCRT-III. Dicho complejo forma vesículas en el lumen de las vesículas endosomales por un proceso conocido como “círculos concéntricos”. Si nos paramos un momento a pensar, crear una vesícula es algo parecido a una división celular por gemación. El tercer gen, cdvA, tiene la información para formar una proteína que se parece a otras proteínas del citoesqueleto eucariótico distintas a la Tubulina.


Parientes lejanos

En el esquema de la izquierda se representan las fases finales de la división de Sulfolobus acidocaldarius. Tras la replicación y segregación de los cromosomas se forma una constricción en el centro de la célula. Se ha observado que las proteínas Cdv se disponen en esa zona central y una hipótesis plausible es que intervienen activamente en dicha constricción. A la derecha se muestra el proceso de formación de vesículas endosomales en las rutas de procesamiento de los receptores de membrana de las células eucariotas. Dichos receptores son internalizados en la célula mediante una invaginación de la membrana plasmática formando una vesícula, la cual une a otras semejantes formando una vesícula más grande llamada endosoma. El endosoma sufre a su vez nuevas invaginaciones, liberándose pequeñas vesículas en su interior. Es en esa segunda invaginación donde están involucradas las proteínas pertenecientes al complejo ESCRT-III (etapas 1, 2 y 3). El resultado es que se forma una gran vesícula llena a su vez de vesiculitas conocida como cuerpo multivesicular, que acaba fusionándose con un lisosoma para la degradación de su contenido.




La expresión de los tres genes está regulada por un puesto de control, lo que en inglés se llama un "checkpoint", pues no se inducen hasta que no comienza la segregación de los cromosomas. Si algo va mal en la replicación del DNA, por ejemplo tras la irradiación con luz ultravioleta, se inhibe la producción de dichas proteínas y se frena la división. También cesan de producirse cuando Sulfolobus no precisa dividirse, ya sea porque deja de crecer, se le inhibe con antibióticos que bloquean la división, o se le impide la división por medio de mutaciones.



Ni C ni Z, para nosotros división se escribe con S.
Resumiendo, los crenoarqueotas no poseen la exclusividad sobre su mecanismo de división celular. Lo que hacen es usar de forma distinta un mecanismo que los eucariotas conservan, pero dedican a otra función. Evidentemente eso tiene una serie de implicaciones filogenéticas. Si nos centramos en la filogenia vista desde el mundo de las arqueas, la primera divergencia se cree que ocurrió entre el linaje arquea/eucariota y el linaje bacteriano. Luego debió ocurrir la divergencia entre arqueas y eucariotas y finalmente la divergencia entre euryarqueotas y crenarqueotas. Estos resultados parecen indicar que el mecanismo de división basado en FtsZ es más antiguo, pero que quizás coexisitese con el mecanismo basado en CdvB y CdvC. Cuando sucedió la divergencia entre los euryarqueotas y los crenoarqueotas, los primeros continuaron con FtsZ y los segundos adoptaron el otro sistema. Los eucariotas sin embargo desarrollaron otro sistema de división celular y dejaron el sistema homólogo a Cdv para utilizarlo en la formación de vesículas, y a la heredera de FtsZ, la Tubulina, la colocaron en su citoesqueleto para llevar cosas, entre ellas los cromosomas, de un lado a otro de la célula.

Resulta muy interesante comprobar que en los organismos procariotas ambos mecanismos de división parecen excluirse entre si. Por un lado tendríamos el mecanismo de las bacterias, y euryarqueas que utilizan FtsZ. Por otro el que utilizan las creanarqueas, basado en las proteínas Cdv. Es decir, unas tienen motores de explosión y otras motores eléctricos. Pero parece que también existen los microorganismos, un grupo de crenarqueas y Thermoplasma acidophilum, una especie de euryarquea, que como los coches híbridos pueden funcionar con motor de explosión o eléctrico pues contienen tanto proteínas Cdv como FtsZ. Pero lo más chocante es que hay un tercer grupo de crenarqueas que no tienen ni proteínas Cdv ni FtsZ. ¿Usarán una turbina?



¿Eliges FtsZ o Cdv?

La distribución filogenética de los genes de división en arqueas indica que no es frecuente el caso en el que existen a la vez las proteínas Cdv y FtsZ. Los recuadros negros indican presencia de los genes, los números se refieren a los grupos filogenéticos a los que pertenece cada especie representada. Tomado del trabajo comentado.




REFERENCIA:
A-C. Lindås, E.A. Karlsson, M.T. Lindgren, T.J.G. Ettema, and R. Bernander. 2008. A unique cell division machinery in the Archaea. Proc Natl Acad Sci USA.

NOTA DE LOS AUTORES
Este artículo se publica simultáneamente en los dos foros administrados por cada uno de los dos autores, esta iniciativa es de esperar que anime al público de cada uno a visitar el otro para obtener una visión más amplia de las "
curiosidades de esos pequeños bichitos ".


Este artículo ha sido traducido al inglés y publicado en el blog "Small Things Considered"

lunes, 17 de noviembre de 2008

En busca de la Arquea perdida


Cuando uno abre un libro de microbiología básica como el Brock o el Prescott una de las primeras cosas que se encuentra es el conocido como "árbol filogenético de la vida". Es un árbol con tres ramas o Dominios. Suele estar construido en base a los parecidos entre las secuencias de los genes que codifican para el 16S rRNA. A mayor parecido entre las secuencias, mayor parentesco entre las diferentes formas vivas. De las tres ramas, dos son procariotas y una es eucariota. Dentro de la rama eucariota o Dominio Eukarya, estamos incluidos los seres humanos, acompañados de todos los animales, todas las plantas, los hongos y los protozoos. Pueden parecer formas de vida muy diversas, pero todas tienen algo en común. Todas las células eucariotas tienen núcleo.




Árbol filogenético de la vida. Las ramas coloreadas de rojo indica que dichos microorganismos son termófilos.



Las células procarióticas no tienen núcleo. Y hay dos tipos, el Dominio Bacteria y el Dominio Archaea. Dentro del primero están unas cuantas conocidas para los asiduos del blog como son Escherichia coli, Bacillus subtilis, Klebsiella pneumoniae, etc. En el segundo están incluidos microorganimos tan interesantes como Halobacterium salinarum o Sulfolobus acidocaldarius. Generalmente a las arqueas se las conoce por su asombrosa capacidad de sobrevivir en ambientes que no parecen adecuados para la vida. H. salinarum tiene su hábitat en las salinas con concentraciones de sal cercanas a la saturación. S. acidocaldarius vive feliz en fuentes hidrotermales con temperaturas de 80º C y a pH de 3. Pero hay que avisar que también existen arqueas que viven en hábitats más normales.





Arbol filogenético del Dominio Archaea.



Si uno mira con más detalle la rama que corresponde al Dominio Archaea verá que está dividida en tres subramas o phylum. Una de ellas se llama Crenarchaeota y en ella se incluyen las arqueas termófilas como Sulfolobus. Otra se llama Euryarchaeota y en ella encontramos a los halófilos como Halobacterium y también a las llamadas arqueas metanógenas como el género Methanobacterium. Estas arqueas son microorganismos anaerobios estrictos responsables de toda la producción de metano de origen biogénico. La tercera rama recibe el nombre de Korarchaetoa y lo más curioso es que no contiene ningún nombre que identifique a un microorganismo. Tan sólo contiene unos números.





El lugar donde crecen las korarqueas. La Obsydian pool en el parque de Yellowstone.



Eso es debido a que dicho phylum había sido descrito en base a los resultados de secuencias de rRNA extraídas de una comunidad microbiana que habita en el "Estanque de Obsidiana" que se encuentra en el parque Yellowstone. Los números corresponden a la identificación de dichas secuencias en una base de datos. Pero no se había podido asociar dichas secuencias con un microorganismo particular. Hasta ahora.



El pasado junio se publicó un artículo en el que se describía la secuenciación del genoma del primer microorganismo perteneciente a los korarqueas. Se le ha bautizado con el nombre de Korarchaeum cryptofilum. Todavía tiene el status de "candidatus" pero probablemente será reconocido como especie dentro de poco. Para conseguir identificarlo los investigadores han seguido la técnica del cultivo de enriquecimiento. Tomaron un poco de sedimento del Estanque de Obsidiana y durante 4 años lo incubaron en medio líquido con nutrientes muy limitados, en anaerobiosis a 85º C y a pH=6'5. Tras esos 4 años han conseguido una comunidad estable de microorganismos. Mediante la utilización de la técnica FISH usando como sonda una secuencia que se emparejaba con el gen que codifica para el 16S rRNA de los korarqueas. Observaron que la sonda hibridaba con unos filamentos muy delgados y largos.





Imágenes mostrando a Korarchaeum cryptofilum.
A: Tinción mediante la técnica de FISH. La célula muestra ondulaciones debido a un artefacto de la técnica.
B: Microfotografía en contraste de fase.
C: Microfotografía por microcopia electrónica de barrido.
D: detalle de la capa S.




El genoma de K. cryptofilum contiene 1,59 Mb y codifica para 1.617 proteínas. El 85% de estas secuencias tiene parecido con otras secuencias parecidas de arqueas. Al parecer el microorganismo puede conseguir energía y carbono a partir de la fermentación de péptidos. Aunque a primera vista parece que este microorganismo está cercano a las crenarqueas, al parecer otros sistemas celulares como la replicación del DNA, la división celular basada en la proteína FtsZ, o la maduración de tRNA le hacen tener un mayor parentesco con las euryarqueas. Asimismo se han encontrado varios elementos genéticos móviles, por lo que los investigadores no descartan que la mezcla de caracteres que presenta K. cryptofilum pueda ser debida en parte a procesos de Transferencia Genética Horizontal (procesos HGT).



¿Y qué importancia tiene el estudio de un microorganismo que vive en una fuente termal de Norteamérica? De nuevo tenemos que echar un vistazo al árbol filogenético. La rama que da lugar al phylum Korarchaeota es una rama que está muy próxima a la base del árbol. Eso quiere decir que K. cryptofilum es uno de los parientes más cercanos a las primeras formas de vida de este planeta. De hecho, todos los microorganismos termófilos, sean bacterias o arqueas, son los que más próximos están a la base del árbol lo que apoya la hipótesis de que la vida debió nacer en un ambiente con temperatura media elevada. Luego conocer su biología nos permitirá a su vez un mejor conocimiento de como pudo surgir y evolucionar la vida.



Y es que a veces descubrir un enigma conduce a nuevos enigmas por esclarecer.



Audio en "El podcast del microbio"

jueves, 6 de noviembre de 2008

Películas y Bichos: "La amenaza de Andrómeda"

El pasado 4 de noviembre murió Michael Crichton uno de los más famosos escritores de Ciencia-Ficción. Recalco lo de "ciencia" porque una de las características de su obra es que siempre procuraba que fuera creible utilizando para el desarrollo de la trama los últimos avances del mundo científico. En su obra no vamos a encontrar espadas láser o telépatas superpoderosos pero si dinosaurios clonados o autómatas descontrolados.



Michael Crichton: médico, escritor, director y productor de cine.

La fama de Michael Crichton comenzó con la versión cinematográfica de su novela "La amenaza de Andrómeda". En realidad el título correcto debería haber sido "La cepa Andrómeda" (The Andromeda Strain) pero hay que reconocer que desde el punto de vista publicitario, el título español es mucho mejor. La novela fue publicada en 1969 y adaptada a la pantalla dos años después, por el director Robert Wise. Trata de la llegada a la Tierra de un microorganismo alienígena muy virulento y de los esfuerzos de un grupo de científicos por neutralizarle. Para ello lo primero que deben de hacer es aislarlo y estudiarlo. El microorganismo es bautizado como Andrómeda y lo que causa es una coagulación masiva de la sangre. Durante el proceso de caracterización del patógeno están a punto de desencadenar una catástrofe que podría acabar con toda la vida del planeta. La película tiene una trama apocalíptica muy típica de la Guerra Fría, sobre todo en el aspecto de las armas biológicas. Pero como volvemos a estar en tiempos en los que el Apocalipsis está de moda en forma de "calentamiento global", no es de extrañar que se haya realizado un remake actualizado para la televisión.



Yo vi "La Amenaza de Andrómeda" por primera vez en el programa "Sábado Cine" de TVE hacia 1980. Me acuerdo porque ese fin de semana estaba estudiando para el examen de Biología de 1º de Bachillerato y uno de los temas eran los virus. Una de las características de estos microorganismos acelulares cuyo nombre significa veneno es que cuando se describieron por primera vez se les denominó "virus filtrables" porque eran capaces de atravesar los filtros de porcelana. Pues bien, en la película hay una secuencia en la que los investigadores están tratando de determinar el tamaño de Andrómeda haciendo pasar aire contaminado por una serie de filtros con un tamaño de poro creciente. Ese aire filtrado acababa en una caja transparente en cuyo interior había una rata de laboratorio. Ni que decir tiene que tras ver la película entendí a la perfección lo que quería decir "virus filtrable".

Confieso que hubo muchas cosas que no entendí de la película. Sobre todo como conseguían deshacerse de Andrómeda. Posteriormente, cuando ya estaba cursando la carrera de Biología, encontré una edición del libro en un puesto de la Cuesta de Moyano. No dudé ni un segundo en comprarlo y aquella misma tarde comenzar a leerlo. La verdad es que no me defraudó. Como esperaba en la novela se detallan las diferentes etapas que seguía el equipo de científicos para estudiar y neutralizar a Andrómeda. Pero hubo dos cosas que me sorprendieron. La primera es que los ensayos de laboratorio que describía Crichton para analizar a Andrómeda eran reales. Entre ellos estaba la elaboración de un perfil para determinar el rango de pH a los cuales Andrómeda era viable (la curva se ve en los títulos del comienzo de la cinta), una imagen de difracción de rayos X de un cristal de Andrómeda, y el análisis cuantitativo de contenido de Carbono, Nitrógeno, Fósforo y otros elementos de dicho microorganismo. La segunda era que al final de la obra había una bibliografía de artículos científicos.



La cuesta de Moyano.
Uno de los mejores lugares para los amantes de los libros

Curiosamente la película se vio envuelta en una polémica por una de sus escenas. Es aquella en la que un mono cae fulminado debido a la exposición a Andrómeda. La secuencia está tan bien rodada que efectivamente parece que el mono muere de verdad. Pero si así hubiera sido la productora habría sido demandada por la Sociedad Protectora de Animales. Wise filmó la escena bajo la supervisión de dicha asociación. Para ello lo que hizo fue poner el mono dentro de una caja con aire y la caja en una habitación llena de dióxido de carbono (CO2). En la misma habitación se colocó a un operario fuera de plano respirando con una botella de oxígeno y con una máscara adicional para el mono. Cuando en la película un brazo mecánico levanta la tapa de la caja, el mono inmediatamente quedó expuesto al CO2, por lo que dio unas cuantas bocanadas y se desmayó. Wise continuó rodando por un par de segundos e inmediatamente el operario puso la máscara al mono para reanimarlo. Sólo hubo una toma.


Un gran clásico de la Ciencia-Ficción.





ResearchBlogging.org


Sanchez, M. (2011). Biosafety and Biological Weapons: The Andromeda strain (1971) Journal of Medicine and Movies, 72 (1), 15-20