Lo que ha encontrado un grupo investigadores de la Universidad de Texas, es como los movimientos individuales de cada una de las bacterias se ven amplificados dentro del enjambre formando olas de gran fuerza que hacen que el conjunto se mueva hacia adelante al unísono. El comportamiento de formación de olas parece estar asociado a la existencia de bacterias-presa. Es decir, si hay comida en el borde de la colonia, el oleaje es mucho más fuerte. Los resultados han sido publicados en PLOS Computational Biology
Imaginemos una célula en el borde de la colonia. Si se mueve hacia adelante probablemente no encontrará a ninguna otra célula de M. xanthus, así que no recibe ninguna señal química y eso le impele a seguir adelante. Pero si se mueve hacia atrás lo más seguro es que se choque con una M. xanthus compañera, así que recibe un estímulo para que se de la vuelta y continúe en dirección contraria. De esta forma el resultado neto es que el enjambre se mueve constantemente en sus bordes.
Pero además, puede dar lugar a que el enjambre se auto-organice en unas olas de densidad alterna que muestran un comportamiento de movilidad colectiva oscilante. No es un sistema de reacción-difusión típico ya que las ondas de sentido opuesto no se aniquilan unas a otras, sino que lo que hacen es atravesarse entre si. Este comportamiento de formación de olas (rippling behavoir) puede modelarse matemáticamente en un ordenador y solo necesita tres ingredientes para funcionar:
- Cuando dos células chocan físicamente intercambian una señal y una de ellas se da la vuelta.
- Un periodo mínimo refractario después del cual una célula que se haya dado la vuelta, no puede dar la vuelta otra vez.
- Una interacción física que permita a las células alinearse localmente.
Para comprobar que las predicciones del modelo funcionaban lo siguiente que hicieron fue observar al microscopio la formación de olas en presencia de una bacteria presa (nuestra vieja amiga Escherichia coli). Confirmaron así las relaciones existentes entre la longitud de onda de las olas, el periodo refractario y la velocidad del movimiento celular. Pero además se encontraron con que podían explicar un comportamiento que se había observado. Cuando un enjambre se encuentra con una zona en la que los nutrientes abundan, el movimiento del enjambre se detiene pero la velocidad de formación de olas aumenta debido al incremento de las señales provocadas por el contacto célula-célula. Eso permite que las células depredadoras permanezcan mucho más tiempo en contacto con la presa y se devore eficientemente la comida disponible. También han conseguido demostrar que es imprescindible el contacto físico entre las bacterias para provocar que una se de la vuelta, algo bastante llamativo ya que lo que esperaban era algún tipo de señal química difundible. El mecanismo molecular de este "toque" aún es desconocido, pero resulta bastante interesante pues permitiría diseñar algún tipo de interruptor por contacto para regular funciones en mecanismos nanotecnológicos o en microorganismos diseñados por biología sintética.
Enlaces relacionados: Micro-Cazadores: la manada de lobos de M. xanthus por Raven en su blog Micro Gaia.
Zhang H, Vaksman Z, Litwin DB, Shi P, Kaplan HB, & Igoshin OA (2012). The Mechanistic Basis of Myxococcus xanthus Rippling Behavior and Its Physiological Role during Predation. PLoS computational biology, 8 (9) PMID: 23028301
3 comentarios:
Increible, hay que ver lo poco que se conoce sobre la ecología de cacería de bacterias... ¡ con lo increíble que es !
Con persmiso te enlazo en una entrada antigua que tengo de M.xanthus
Saludos
Hola Raven
Creo que se te ha olvidado poner el enlace. Supongo que es este:
http://microgaia.blogspot.com.es/2009/11/micro-cazadores-tercera-parte.html
Saludos
Hola, está puesto justo al final del párrafo que cito de tu artículo. Pero quizás no esté todo lo visible que debería...añado otro enlance justo antes del vídeo, así hay click seguro.
Saludos.
Publicar un comentario